

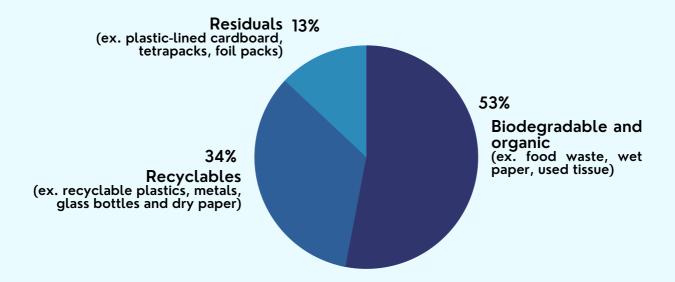
Ateneo Food Packaging Primer

A guide to sustainable food packaging practices at the Ateneo de Manila University

© Ateneo Institute of Sustainability Published in August 2022

This primer is based on the Ateneo de Manila University Sustainability Policies and Specific Guidelines. Check out the full guidelines <u>here</u>.

For more information, please email the Ateneo Institute of Sustainability via <u>ais@ateneo.edu</u>


Environmentally responsible, ecologically sustainable

In June of 2008, the Ateneo Environmental Management Coalition (AEMC) conducted a waste audit program to characterize the solid waste stream of the Loyola Schools.

The results showed that, in terms of mass, the LS solid waste stream is mostly biodegradable and organic (53%); about 34% of the waste are composed of recoverables (i.e., recyclable plastics, metals, glass bottles and dry paper); and about 13% of the wastes are residuals (i.e., laminates such as plastic lined cardboard, tetrapacks and foil packs).

However, different kinds of plastics made up most of the waste in terms of volume. Most of this plastic was polystyrene packaging.

This shows that most of the solid waste in the LS campus is from disposable food packaging available on campus. Because of this, we need to **avoid single-use disposable packaging** such as tetrapacks, laminates like plastic-lined cardboard, foil packs, and other items found on page 6.

A shift to reusable wares was implemented complemented by the release of the LS Guidelines for Packaging Materials used in Food Products Distributed on Campus. This was incorporated into the Ateneo Sustainability Policies and Specific Guidelines, which has been implemented university-wide since 2016.

Find out more about the Ateneo's sustainability initiatives by visiting the **Ateneo Institute of Sustainability**.

What is the rationale behind the packaging guidelines?

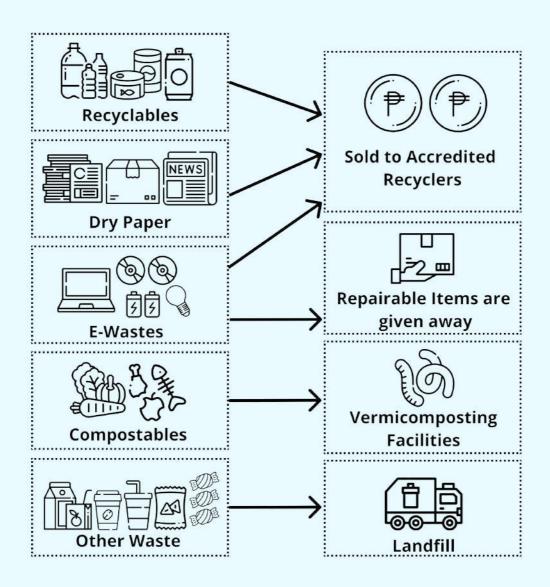
A study conducted by Jambeck, et al in 2015 identified the Philippines as the third largest generator of mismanaged plastic waste in the world, with 1.88 million metric tons of plastic waste annually. This rate is expected to increase to 5.09 million metric tons per year by 2025. These mismanaged wastes are composed of improperly disposed or littered plastics. It is also estimated that almost three quarters of this mismanaged waste were originally collected through a solid waste management system but escaped somewhere down the collection chain (WWF, 2018). Such fugitive wastes leak into aquatic ecosystems both inland and marine, where they result in a medley of impacts from blocked waterways and flooding, to impacts on aquatic biodiversity and the food chain.

Recent investigations into the types and amounts of plastic waste have found that the common plastics found in marine ecosystems include polystyrene cups, food packaging, bottle caps, and plastic beverage bottles (Kalnasa, et al, 2019). Sachets (thin plastic packaging for single or small portions of shampoo, detergent, instant coffee, etc.) have also been documented as one of the major plastic wastes along coastal areas (Paler, et al, 2019). A recent audit conducted by the NGO Global Alliance for Incinerator Alternatives (GAIA) determined that, in the Philippines, more than 163 million sachets, 48 million pieces of plastic shopping bags, and 45 million thin film plastic bags are consumed daily (GAIA, 2019).

As the plastic crisis worsens, our responsibility to reduce plastic consumption and to contribute solutions becomes more important!

We aim to minimize waste while maintaining food quality, hygiene and integrity.

This means that reusable wares are prioritized even if natural or biodegradable alternatives are available. However, if the provision for reusable wares is not possible, then the next best alternatives are natural materials.


The point is to throw away less!

The Loyola Schools Ecological Solid Waste Management System

The University practices Ecological Solid Waste Management, focusing on waste reduction, segregation at source, and waste diversion through unit-based materials recovery facilities.

The best approach is to avoid generating waste in the first place!

Examples of acceptable packaging materials

Reusable Materials

Food grade plastic or metal plates or food trays

Ceramic dinnerware

Glass or polycarbonate tumblers

Sturdy reusable food containers (baunan)

Metal cutlery

Examples of acceptable packaging materials

Natural Materials

(only the following are accepted and only if reusable wares are absolutely not possible)

A note on natural materials

Just because something is "natural" or "biodegradable" doesn't mean that it's the best option for packaging. Unlike other countries where there are systems in place to collect and treat biodegradable waste, in the Philippines most of the wastes are brought to the landfill. When biodegradable materials like cornstarch-based or bagasse packaging are buried in landfills, they release methane which is much more powerful than carbon dioxide in trapping heat in our atmosphere. The better option is to use or provide reusables like those in page 4. Choosing more responsible packaging materials in the cafeteria will help fight climate change!

Examples of unacceptable packaging materials

Disposable plastic containers, bags, utensils, cups, straws including polystyrene or styrofoam

Laminates (tetrapacks, plastic-lined cardboard and paper, sachets, foil packs)

Microwaveable takeaway containers

Bio-based but disposable containers and cutlery (ex. bagasse, starch-based materials)

References

Environmental Protection Agency. (n.d.). Understanding Global Warming Potentials. EPA. Retrieved August 18, 2022, from https://www.epa.gov/ghgemissions/understanding-global-warming-potentials

Global Alliance for Incinerator Alternatives (GAIA). 2019. Plastics Exposed: How Waste Assessments and Brand Audits are Helping Philippine Cities Fight Plastic Pollution. Quezon City, Philippines. https://www.no-burn.org/wp-content/uploads/PlasticsExposed-3.pdf

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., and Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science. 347(6223): 768-771.

Kalnasa, M. L., Lantaca, S. M. O., Boter, L. C., Flores, G. J. T., Galarpe, V. R. K. R. (2019). Occurrence of surface sand microplastic and litter in Macajalar Bay, Philippines. Marine Pollution Bulletin. 149: 1-6.

Paler, M. K. O., Malenab, M. C. T., Maralit, J. R., Nacorda, H. M. (2019). Plastic waste occurrence on a beach off southwestern Luzon, Philippines. Marine Pollution Bulletin. 141: 416–419.

World Wide Fund for Nature (WWF). 22 June 2018. The Scourge of Single Use Plastic in the Philippines.

https://wwf.panda.org/knowledge_hub/where_we_work/coraltriangle/? 329831/The-scourge-of-single-use-plastic-in-the-Philippines

